N
(23 - " TechNIGAL REPORT

STABILITY OF THIN TORISPHERICAL SHELLS UNDER
UNIFORM INTERNAL PRESSURE

by

JOHN MESCALL

JUPR IR N o R e i .

i

METALS AND CERAMICS RESEARCH LABORATORIES

U. S. ARMY MATERIALS RESEARCH AGENCY
JUNE 1963 WATERTOWN. 72, M,




The findings in this report are not to be construed
as an official Department of the Army position,

ASTIA AVAILABILITY NOTICB

Qualified requesters may obtain coxlen of this report from Director,
Armed Bervices Techaical Information Agency, Arliagton Hall Statioam, Arliagtoa 18, Virgiaia

DISPOSITION INSTRUCTIONS

Destroy; do sot returs



Shells, buckling

Stresscos and astrains

STABILITY OF THIN TORISPHERICAL SHELLS UNDER UNIFORM
INTERNAL PRESSURE

Technical Report AMRA TR 63-06

by

John Mescall

June 1963

AMS Code 5011.11.838
Basic Research in Physical Sciences

D/A Project 1-A-0-10501-B-010

METALS AND CERAMICS RESEARCH LABORATORIES
U.S. ARMY MATERIALS RESEARCH AGENCY
WATERTOWN 72, MASS,



Shells, buckling

Stresscs and strains

STABILITY OF THIN TORISPHERICAL SHELLS UNDER UNIFORM
INTERNAL PRESSURE

Technical Report AMRA TR 63-06

by

John Mescall

June 1963

AMS Code 5011.11.838
Basic Research in Physical Sciences

D/A Project 1-A-0-10501-B-010

METALS AND CERAMICS RESEARCH LABORATORIES
U.S. ARMY MATERIALS RESEARCH AGENCY
WATERTOWN 72, MASS.



U.S. ARMY MATERIALS RESEARCH AGENCY

TITLE

STABILITY OF THIN TORISPHERICAL SHELLS UNDER UNIFORM
INTERNAL PRESSURE

ABSTRACT

The stability of the toroidal portion of a torispherical shell under
internal pressure is considered from the point of view of the linear
buckling theory. A detailed stress analysis of the prebuckled shell is
made employing asymptotic integration. The change in potential energy of
the shell is then minimized using a Rayleish-Ritz procedure for actual
computation of the critical pressure. Numerical results reveal that
elastic buckling may occur for very thin shells whose material has a
relatively high value of the ratiov of yield stress tc¢ elastic modulus.
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SYMBOLS
coordinates of middle surface of shell
coordinate normal to middle surface of shell
Lame’ coefficients associated with a, B
principal radii of curvature
displacements in the a, B, z directions

additional displacements in the meridional, circumferential,
and normal directions after buckling

strains at any point in the shell

stresses at any point in the shell

strain energy of thin shell
middle surface strains and curvature changes in a thin shell

angle of rotation of normal to middle surface about tangent
to lines P = constaut, a = constant

coordinates in meridional, circumferential direction on
toroldal middle surface

radius of cross section of torus
distance from center line to center of toroidal cross section

r = a+ b sin ¢, horizontal distance from center line to
point on toroidal micdle surface

X = b/a
- 2n
A= 7o,
shell thickness

Young's modulus of elasticity

Poisson's ratio
kh®

flexural stiffness of lorus: [U = iE(i—j—;Ey]
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applied pressure

critical pressure

wave number defining number of circumferential buckles in
torus

middle surface stress resultants prior to huckling

middle surface stress couples prior to buckling
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INTRODUCT 1ON

Torispherical shells are frequently employed as end closures for
cylindrical shells both in missile design and in a wide variety of
industrial-type pressure vessels. Such shells generally consist of
a shallow spherical cap joined to a toroidal segment, Joined in turn
to a cylindrical shell. This combined shell is then subjected to in-
ternal pressure. It was known' that large, comprecsive hoop stresses
were developed in the torus, and that for very thin shells, elastic
buckling was a distinct poesibility. For shells whose thicknese is
heavy enough to avoid buckling, but which may still be rather thin
compared to the toroidal radius, plastic deformation may occur. This
has been examined in detail by Drucker and Shield.?’?® However, the
elastic stability of torispherical shells was not considered a matter
for concern until, recently, such a shell was actually observed to
buckle under internal pressure. (See Figure 1.) The problem is an
interesting one, since the prebuckling state of stress in such a shell
is not a simple one. The membrane state, often employed to eptimate
prebuckling stresses, would actually predict a state of tension in the
torus. Consequently a thorough stress analysis of the shell prior to
the onset of instability must be made. This stress analysis is also
useful (and necessary) in ascertaining the dividing line between those
configurations which are likely to btuckle and those which are likely
to undergo plastic deformation.

In this report, prebuckling stresses in a shell of the type shown
in Figure 2, subjected to internal pressure, were determined by asymp-
totic integration techniques, with special attention being devoted to
the particular solution. The vertical support on the cylinder was as-
sumed to be sufficiently far removed from the Junction of the torus
that its specific form had little influence on the toroidal stresses.
These results were then incorporated into the stability equations for
the toroldal segment, and numerical results were obtained by applying °
a Rayleigh-Ritz approach to an appropriate potential energy expression.
Since no prior theoretical results appear to be available, an experi-
mental investigation of the same problem was undertaken simultaneously.
The results of the two investigations compare favorably. Finally, a
somewhat simplified stability criterion is proposed which provides re-
sults of essentially the same degree of accuracy, at a considerable
saving in effort.



ANALYS1S OF THE ELASTIC STABI' .Y OF THIN TORISPHERICAL SHELLS
UNDER UNIFORM INTERNAL PRESSURE

Theoretical Background

Equations governing both the equilibrium and the stability of a thin
elastic shell may be obtained in the following manner.*:® Beginning with
an appropriate set of strain-displacement relations and a stress-strain
law, one forms the|strain energy integral associated with the thin shell
under consideration. For a homogeneous isotropic thin shell this may be
expressed as .

U - !‘2- Iﬂ'[caea *oge, oapeaB] AB da dp dz (1)

Next, the principle of virtual work and the principle of stationary poten-
tial energy are applied. In this connection, consider a shell in a state
of equilibrium characterized by displacements u,, vy, w,. This state 1is
said to be one of "neutral" equilibrium if there exists an adjacent equi-
1librium state differing from the first by an infinitesimal variation in
the quantities characterizing that state. We therefore consider an alter-
nate equilibrium state characterized by displacements

u=up * oy VEvo t v, W TWo tm, (2)
where n ia an infinitesimal, independent of a, B.
The strain energy associated with this second state becomes
U =1, + M, + U, (3)

The principle of stationary potential energy implies that for the second
state to be one of equilibrium,

& + 6V =0, (L)

where 6V is the negative work done by external loads due to a variation in
displacements. Considering only variations in u,, vy, w,, we have:

U, + &V, + n(&U, + &Vy) = 0. ()

But, since the first state was assumed to be an equilibrium state, the:
principle of virtual displacements implies that

&, + 6V, = 0. (6)

Hence the condition that the first equilibrium state be unstable is that
wa + &Vg = 0. (7)

To summarize, equation 6 ylelds equatiuns governing the equillb-
rium of a state described by displacements u,, vy, Wo, while equation 7
yields equations governing the stability of this state. This general
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statement of the problem is valid for both large and small deflections.
Thus, depending upon the generality of tne strain-displacement re.ations
and the stress-strain laws assumed, a variety of theories is possible.
Kempner® delineates several of these in considerable detail and with
attendant clarity.

Toroidal Geometry and Strain-Displacement Relations

We consider the coordinate system shown in Figure 2 with 9,6 the
middle surface coordinates in the meridional and circumferential direc-
tions and z normal to both, positive when directed inward. The princi-
pal radii of curvature R,, R, are given by R, = b and Ry sin® = a *+ b
8gln ¢ = r. The so-calleé me’ coefficients }or this system are A, = b
and A, = Ry sin ¢ = r. With this information it is a simple matter to
obtain from Reference L or 5 (with obvious changes in notation) the
following strain-displacement relations, valid for small strains but
large rotations:

= ; 2
ecp %m * 3 (wg?)
1
€ = Ly * 5 (4?)
g~ fpg - Wl (8)
where
l,w = i\o - ZXgp Iy = 2,9 - zXg
Yoo ?‘Pe - zl(we (8b)
and
~ l L3 1 + 3
gcpx E(u’cp -w) gez;(v,e u cos @ - w sing)
21 1
?we = E‘V’w) + ;(u,6 -V cos ¢) (8c)



X = - $wg),0 Ko = L(wp),0 - L222(uy)

r

1,
Kog = (T, - 7ve),e (8a)

Yo = %(w,e + v gin o) Wg = - %(w,¢ + ) (8e)

In obtaining these relations, in addition to the underlying assumptions
of thinness of the shell and validity of Kirchhoff's hypothesis, we
have made the further assumptions that components of strain and rota-
tion are small compared to unity, and in addition, strains are small
compared to rotations, i.e., ¢ = 0(¢) = 0 (w®) << 1. Further, we have
assumed that w;, the component of rotation in the plane of the middle
surface of the shell 18 much smaller than the other two components,

and wg. Finally, it is possible to effect a considerable saving in
algebra with a minimal expense of accuracy by neglecting in and wy
the contribution of the u,v terms. This may be justified on an order
of magnitude estimate of the terms involved, or by examination of the
effect of this approximation on numerical results. The latter rein-
forces the former. This approximation results in what is sometines re-
ferred to as a Donnell-type theory. In what follows, then, we take,

MR CHYREEEIE CRE (8£)

With a stress-strain law assumed in the form

T = T%%’(‘¢ + veg) og = I%%’('e * vey)
. _E
pg ™ F1rv) %P (9)

the strain energy of the shell may be written out in detail, as well as
the quantities U, and U,, sometimes referred to as the first and second
varlation of the strain energy. Specifically,

UI = .r‘r'r (owoefol + o'eoce1 + O}Deo‘wex )brdmedz (10)



1
Us =3 [ (opy o * %9 %, " %o, oo,

+ 2[opy e, + op, €0, * otpeoeq:en])brdtodedz (11)
where
P = 4 +1 LI = £ +1mae = £ - w
o, "o, 5% )" g = %e, *5(%,)° Cpe = “og - % %

‘(pl = t(pl + weow91 ‘91 = Lel + mcpowel %9; = 1(991 - %owe

[} =
q’ll

rof

1 ,
w, )2 € = 4 € = . w 12
8 ) 0, §< %x ) »8,, %1 6, (12)

and where it is to be understood that the subscripted strain or rotation
is to be evaluated in terms of the displacement of the same subscript.
Finally, oy, 0g and Opg are related to the appropriately subscripted
stralns according to equation 9.

Stability Criterion

Employing linearized strain-displacement relations, we may obtain
from equation 6 the equilibrium equations governing the (rotationally
symmetric) prebuckling state of stress in the shell. We prefer to
solve these in a somewhat different formulation however, and omit their
presentation here. Proceeding directly to the stability relations we
observe first that the prebuckled state is one of small deflections,
governed by the classical (linear) theory. As Novozhilov* points
out, then, we are justified in simplifying the expression for U, by

omitting the w, terms in e, , ¢ and €pg + UPon integrating through
the thickness, h, we may wﬁte 1 1

Eh ) 1-v;5
Uﬂ ™ m ‘]‘I %?@13 + 2919 + 2\)1{p1£el + -2— elibrdtpde

Eh® N . o \ o1
+211(1-1;3) H 3"«’: "e: 2”%1)‘91 2(1 v)x‘,e:sbrdtpde

+ % I‘J‘;N(po(wex )3+ Neo(%1)2 - 2%90(%1"’91)“’1"4‘”9 (13)
-7 -



where Ny , Ng are the stress resultants of the prebuckled shell, and
o (3
due to rotational symmetry prior to buckling, N%o = 0,

The potentlal energy of the external force system, V,, is equal to
the product of the external load and the increase in volume enclosed by
the shell. An approximate expression for Vy, for the toroidal shell
segment under uniform internal pressure p is®

v, -g“" %(u:cp -w) +¥(v,e +ucosp -w sin o)

23 2 Al
v srin‘P ¥y, - r’e brd¢pde . (1b)

$tability is governed by the relation
“Ua + Va) = 0' (15)

It is clear that solution of the differential equations governing the
stability of the toroidal shell segment would be a formidable task even
if the prebuckled state were a simple one. For this reason we employ
a Rayleigh-Ritz approach and obtain an upper bound for the critical
pressure, In this connection, guided somewhat by experimental observa-
tion of the buckled pattern in the toroidal segment, we choose the fol-
lowing set of displacements

u, = A r? cos Y (tp-«po) cos (n8)
v, = Br? gin \ (%-9,) ain (nd)

W, = Cr? sin\ (9-9,) cos (né) (16)

where n 1s the number of lobes in the circumferential direction and

X, B, T are undetermined coefficlents, The variations in u,, vy, W, are
reduced to variations in A, B, C. Inserting equation 16 into equation
15 and requiring that the resulting equation be satisfied for arbitrary
values of &A, 6B, &, we obtain a system of three linear homogeneous

algebraic equations in &, B, T, whose determinant set equal to zero
ylelds an estimate of the critical pressure. Omitting details of inter-
mediate algebra we may write

-8 -



P h
T 2(1-v3)b (1%") (17a)

where
- - 2 - 3
N = L, a,,8,, 8,,(ag5) -8, 08,4 *8,,8,,8,5 - 85584
2 3 3
D = 2a,,8,,by, * 854 by, * 8,7 byy * 28,,4855D,4 * a4 Dy,

where

- 8y5(ag3b 5 * 8,4bg,) - Lay,(ag,by, * a;,by,)

P PPLI (17b)

1 = (5 + hv)(lz*) -2(2 + v) x(%) + p(zbé*) ‘1_—;’)n_’(_j%;)
ajp = n(1 + 5v) (-1—) 2vn x.(ﬁf*) - n%(1- l,)(2'1%)

8y, = -2(2 +v)(%) N 2)\(267) _ a1 + 2,‘,)(18*)+ 2‘,)\(2;)2*)

fas (%ii) ' (%?'i) " (zti*) " 12w 18(1 )(i) h('lfi?)
+ i’(17+8v)(12¥) (2;;*) 3(1»,‘,)(1_) + 20 )\(1,,,,)(2_)
o) ) o))
* hvn“(? )- -w(uw)(-i) +2 xana(lb ) - zna(1+3v)(3_)
+ 2nﬂi'(1-6v)(g*‘) + 203(1-v) }\,(11 )}

-9 -



o’
n

- 3(®) (@) @)

2
bay * n(2)
64 1 23 3 K
e = 1(5) - 26) TR (e

where the quantities (1%), etc.,are definite integrals of the form

/2 _
(1%) = L r sin® A(©o~p, )do,

o]

and are listed in the Appendix. All these integrals may readily be
evaluated explicitly in terms of trigonometric functions, Finally,

n/2 -
Ky ’Ip N rosin® Mo-pJde
(o]

n/2 - - =
K, = L ngor(Zr Tsep sin Mw-,) + N r? cos X(?ﬁo))zd¢.
’ (18)

Prebuckled State of Stress

In U, we encounter the integrals

20 N(PS’.’BQ)’ bravae, 3 [[ Negfrﬁ)abrdme (19)

which assess the contribution of the prebuckled state of stress to the
strain energy of the buckled state. Since the shells under consideration
are very thin, the asymptotic method of solution of Reissner's equations
for symmetric deformation of shells of revolution is most appropriate.,

- 10 -



Clark”s8 has presented asymptotic representatlons for both the homoge-
neous and particular solutions for the toroidal shell. These were
employed in the present investigation.

In this connection, it may be well to digress for a moment to dis-
cuss the particular integral for toroidal shells. Galletley! has given
ample warning that the frequently employed practice of usinz the membrane
solution as a particular solutiun to the nonhomozeneous thin shell equa-
tions is not valid in the case of the torus. His results of a numerical
integration of the complete differential equatiouns for just such a tori-
spherical-cylindrical shell show a markedly different stress pattern
when compared to a solution using the membrane state as a particular
solution. However, when the first two terms of an asymptotic particular
solution developed by Clark® are used in conjunction with the homogeneous
asymptotic solution, the results agree remarkably well with dallatley's.
(See Figure 3, 2 This agreement is obtained at a value of the asymptotic
parameter (p = 15) which is considerably smaller than the values assumed
by the shells whese stability we wish to consider, and thus assures
validity of application of the asymptotic method.

Very briefly, the prebuckling stresses may be written in terms of
the two basic functions P and Y according to the relations:

2
N EE—(Y cos @ + Q sin o)

(Po rm
. En?
No, = Tpi¥sy * Ehe rbpy ) (20)
where
p= (1+XSinw)‘1/3C2[th1r - Byhyg * Cohar = Dyhgy * u-a/s(x/D)1/b,

* [F,Tp - G,T3] + (pd)2(A/D)1/3[6,Q7° - G(¢)]}
¥ = (1*\sing)=1/2 Q{Byh, . *+ Aghyy *+ Dohy, *+ Cohyg*(w~3/3(N/D)1/3*

o« [F T4 + GoTp1) - (pQ#)™r (A/D)/2[F,u - F(e)]) (21)
and

- 11 -



A=v/a, p=2 n-/120-7), y=-w/e (2u)?/s,

1/3 ) )
T ‘ch(l_ffis%ﬁ) do @ (/o) /s,

m m 1/a
Tl V= - oy I rbpyde, F(ep) = —35(§%§;I;$§) (rV)cos o,

1/3
a(e) = :l‘x';%‘) ibngg (" + _b;si_nq) (rv) - 2bp sin @ cos @

n-

- bpr cos ¢§, F, = F(9,) Gy = G(wy), (21a)

py and py are the horizontal and vertical components of applied pressure.
In the above, h,,, hy4, hgy, hyy are the real and imaginary components

of the modified Hankel functions of order one-third, of the first and
second kind respectively. Thelr argument is understood to be (iy).

T., T4 are the real and imaginary parts of a special function introduced
by Clark, and satisfying

T -1y T(y) = 1. (22)

s Dy are constants to be determined from the boundary condi-
tgona of %he specific problem considered. In the present analysis, a
shallow spherical segment was assumed joined to the torus at @ = ¢,,

and a cylinder at ¢ = %. The vertical support on the cylinder was

assumed to be sufficiently far removed from the junction of the torus
that its specific form had little influence on the form of the toroidal
stresses. N¢°, Neo, M¢° and Meo were evaluated along the length of the

torus. A typical set of results is shown in Figure 4. The integration
indicated in equation 18 was carried out numerically. When this is done
for a specific choice of geometric parameters, p,./E remains a function

of n. Tne minimum value of critical pressure was found by calculating
Poy/E Over a range of n, subject to the condition that n be an integer.

Simplified Formula for Critical Pressure

The procedure outlined above was carried out initially using
equation 17, It soon became apparent that certain terms could be

-12 -



omitted without significantly affecting the numerical results, and at
the same time affording considerable simplification of the relation for
critical pressure. The validity of the approximation rests on the fact
that the value of n found to minimize pcr/E was always rather a large

number compared to unity. This result 1s consistent with experimental
observations of the buckling pattern. (See Figure 1.)

The simplified relation for critical pressure may be written:

N
T Ty (r>>1) (23a)

where

D = b,,(2%,, - L a,, 8,,) (23b)

o ()()

a,, * -n i(zv(gb%f) + (1-v) (%))
s (8

A GE)

o (8)-(8) (8- 550

iy 1 26w 223 n®b K
P "R T 5((3?) " (T)) SR
w/2 _
Kg = I Neo r2® 8in?® A(o@-p, )de
Po
n/2 _ - . _ f
K, = I N¢°r(2rr,¢ sin X(ep<p,) + X r?(cos\(#-9,))) do,
%o (23c)

-13 -



Equation 23 is to be preferred over equation 17 for computational pur-

poses when n 1s large. In all cases considered in this investigation,

the value of n minimizing p., was greater than L0 and in most cases was
greater than 60,

Mumerica)l Results - Comparison With Experiment - Discussion

Computations of the critical pressure have been carried out thus
far for a limited number of parameters. A typical set of numerical
results is shown in Figure 5. The parameters in these curves correspond
to those involved in an experimental program concerned with the same
problem. In each numerical evaluation of the critical pressure, a
stress analysis of the unbuckled shell was made, the parameters K, and
K, determined, and then the stability criterion evaluated.

In the experimental program, scale models representative of those
used in missile applications were tested. These models were made of
poly-vinyl chloride, a material chosen among other reasons for its rel-
atively high ratio of yleld strength to elastic modulus. Some of the
results of these tests are also shown in Figure 5. In the case of the
thickest shells tested, (h/b > .007) the disagreement between theory
and experiment increased significantly. The prebuckling stress analysis
for these shells revealed that at pressure levels below the predicted
buckling pressure, the difference in principal stresses in the shell
near the Junction of torus and spherical cap had exceeded the yleld
stress of the material. Since our analysis has assumed elastic behavior
throughout, it would not be expected to apply to the experimental mate-
rial in this range of the parameters.

The following experimental result may also be of some interest. An
alumimum torispherical bulkhead was tested under internal pressure. The
parameters involved were

¥ =35° a=3Lh3" b =18.07" hgyerage = -081" E =107 v =.3,

Dimples began to appear in the toroidal section at about p = 25 psi.
The pressure level was increased to 4O psi, and when the load was re-
leased the dimples remained. The theoretical buckling pressure for a
shell of this material (see Figure 5)is 6L psi. tlowever, the prebuckling
state of stress reveals that in the vicinity of ¢ = L5°, the value of
O-Cg

&

on the inside and outside surfaces reaches a value of 1300 and

-1 -



1015, respectively. Thus, for aluminum with a yleld stress of 35,000
psi (as was the case in the test described) a value of p = 25 psi would
produce stresses very close to yleld.

The plastic models of this configuration, however, appeared to
buckle elastically at 3.2 psi. (Theory predicts 2.9 psi.) This corre-
sponds to an elastic buckling pressure of 70 psi for aluminum with
E = 107. The stress level induced near L5° in the torus in the plastic
models for p = 2.9 psi is in the vicinity of 3700 psi, which is below
the yleld stress of the plastic material used.

It is clear, then, that the phenomenon of elastic buckling of
torispherical shells under internal pressure occurs only for very thin
shells whose material has a relatively high value of the ratio of yleld
stress to elastic modulus. With the increasing role being played by
such materials in space structures, it is believed that the analysis
described in this report will assist the designer toward his objectlve
of increased efficiency. Finally, it should be polnted out that the
analysis may be applied to toriconical shells simply by replacing the
spherical cap by a cone in determining the prebuckled state of stress.

~15-



Figure |. EXPERIMENTAL SETUP
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APPENDIX

The following definite integrals occur in the expression for criti-
cal pressure (equation 17 or 23). In each instance the limits of in-
tegration are from ¢, to n/2. The variable r is given by r = a + b sin ¢-
All integrals may be evaluated explicitly in terms of trigonometric

functions.

Lt = J‘ r sin? (@, )do

2% = J’ r sin @ cos? ¢ sin® X -9, )do

3% = [ r cos? ¢ sin? M =, Jaep

# = [ r cosd ¢ sin? Mp=p, )do

5# = [ r cost ¢ sin® N -, )deo

6k = [ r3
7*-J‘r3
8*-J'r3
9*-J‘r=
10% = [ r®
1;*-J‘r3
12% = [ r®
13*=J'r3

1y = [‘ rd

sin ¢ sin? (@, )dep

8in ¢ cos?® ¢ sin? N(9-p, )dp

cos @ sin N, )cos N op~p,)de
cos® ¢ sin X(@-p,)cos x(cp-(po )do
8in® N(o~0, )do

cos® A(9-9, Jde

cos® @ cos?® N @9, )de

cos? ¢ sin® N -y, )de

sin® @ sin® (-0, )de

-21-



15% = r r3 cos® © sin? '):(‘P-GPO )de
16x = [ r® cos ¢ sin3 N -0, )de

174 = J‘ r3 cos 9 sin M(9-9,) cos '):(CP-CPO )de

184 = J‘ r® sin ¢ cos 9 sin N®-9,) cos K(Q’—CPO )de
19% = [' r® sin 9 sin? f((p-tpo)dﬁp

20#% = ]' r* sin® X(9-g,)do

21 = [' r* cos? X(@-g, )do

22% = ]‘ r¢ sing sin® N o<p,)de

23% = [ r4 sin g cos? o=, )dep

2l = ‘f r* cos? ¢ cos? \(¢-u,)do

25% = [ r* cos ¢ sin Mo-0,) cos N(@-0, )de
26% = [ r® ein? A o1, )dop

27% = rrs cos? i(cp-cno)dcp

-29.
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